If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3t^2-6=5
We move all terms to the left:
3t^2-6-(5)=0
We add all the numbers together, and all the variables
3t^2-11=0
a = 3; b = 0; c = -11;
Δ = b2-4ac
Δ = 02-4·3·(-11)
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{33}}{2*3}=\frac{0-2\sqrt{33}}{6} =-\frac{2\sqrt{33}}{6} =-\frac{\sqrt{33}}{3} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{33}}{2*3}=\frac{0+2\sqrt{33}}{6} =\frac{2\sqrt{33}}{6} =\frac{\sqrt{33}}{3} $
| 60+0.6x=50 | | (2x-1)²=(2x-1)(6x+5) | | a/2-3=1 | | 3(15-2(x-2(x-5)))-5x-20=0 | | 20(7x+2)-18(3x+4)-5=25(x+5) | | 184=15+5d/11 | | 4x-6x+19=3x+29 | | 1x-0=1x | | 4(X-3)-3(x-3)=5(x+2)-9(7-x)+20 | | 4s+42=146 | | 6x+24=-3 | | 7(3x-11)=7x+7 | | x(x+5)-16=2 | | 3(x-2)+4(2x-1)=12 | | 4(x+1)+2(x+1)=36 | | 3(x+4)-16=2 | | x2+3x+-56=0 | | x(2x+3)+x(3x+2)=0 | | 3x2-7x+1=0 | | Y=5÷2^x | | 196=15+5d/11 | | 3x+(2x+2)=27 | | 2x+(2x+2)=27 | | n*20=1040 | | m-18=6 | | 8(x+6)+7=11x-3(x-6) | | 4(x+7)=7x+5-3x+23 | | 15=-3(23-x)+3(x-4) | | 3x+5=2x8 | | X2-15x+50=0 | | 4(3x+2)=5(x+2) | | 5x+6=4- |